

Owner: Linolie & Pigment A/S
No.: MD-23213-EN_rev2
Issued: 16-04-2024

Issued: 16-04-2024 Revision: 02-04-2025 Valid to: 16-04-2029

3rd PARTY **VERIFIED**

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804

Owner of declaration

Linolie & Pigment A/S ØSBYGADE 46 6100 HADERSLEV

VAT no.: 41189932	LINOLIE&PIGMENT
Programme EPD Danmark www.epddanmark.dk	∠ epddanmark
☐ Industry EPD ☑ Product EPD	☑ Product specific☐ Average☐ Worst Case
Declared product(s) 1 liter exterior linseed oil paint is showcased on the frontpage)	in the color: 84/Ordkløveri (Color
Number of declared datasets/pr	oduct variations: 1
Production site ØSBYGADE 46 6100 HADERSLEV	V DANMARK
Use of Guarantees of Origin ☑ No certificates used ☐ Electricity covered by GoO ☐ Biogas covered by GoO	
Declared/ functional unit 1 liter (Core environmental indic found under <i>Additional informat</i>)	cator results for 1 kilogram can be ion)

Year of production site data (A3) 2022

EPD version

[Revision no. 2], [02-04-2025]: Changes from the previous version include improved data quality and modeling for specific pigments and product packaging, along with a more precise approach to C3 modeling. Additionally, the REACH statement has been corrected, confirming the absence of substances of concern.

Issued: 16-04-2024 Valid to: 16-04-2029

Basis of calculation

This EPD is developed and verified in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

□Cradle-to-gate with options, modules C1-C4 and D □Cradle-to-grave and module D □Cradle-to-gate □Cradle-to-gate with options

CEN standard EN 15804	serves as the core PCR
Independent verification data, according t	
□ internal	
Third part	y verifier:
Cr	y Pr
Guan	gli Du
Aalborg Uniy	ersity, BUILD

Martha Katrine Sørensen EPD Danmark

Life	Life cycle stages and modules (ND = not declared)															
	Produc	t	Construction process Use				End of life				Beyond the system boundary					
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	X	ND	ND	ND	ND	ND	MD	ND	ND	ND	X	X	X	X	X

Product information

Product description

Linseed oil paint is a type of paint made from linseed oil extracted from flax seeds. Linseed oil serves as a binder in the paint, which also includes various other components such as one or more pigments, a dryer, and a fungicide. Linseed Paint for Exterior Use is typically applied on woodwork such as windows, doors, gates, etc. Surfaces painted with Linseed Paint retain the wood's natural ability to release moisture. This means that moisture can exit the wood without causing the paint to peel or creating a basis for the onset of decay in the wood. At the same time, the linseed oil in the paint protects the surface from rain and the pigment in the paint protects against the sun's degrading rays.

On planed wood it provides a surface coverage of approximately 15-18 square meters per liter of paint, while on rough-sawn wood, the coverage is approximately 10 square meters per liter of paint.

Surface	Surface coverage (liter/m2)
Planed wood	0.06-0.07
Rough-sawn wood	0.1

Recommended number of coats depends on the conditions of the surface, see technical information.

The main product components are shown in the table below.

Material	Weight-% of declared product
Pigments	55%
Linseed oil	44%
Drying agent	1%
Additives	1%

Product packaging:

The composition of the sales- and transport packaging of the product is shown in the table below.

Material	Weight-% of packaging
Tin bucket	77%
Cardboard	21%
Corn starch	2%

Representativity

This declaration, including data collection and the modelled foreground system including results, represents the production of 1 liter 84/Ordkløveri exterior linseed oil paint on the production site located in Haderslev, Denmark.

Pigments have a varying influence on the environmental performance of paint. To account for these differences, an EPD tool has been developed and verified in conjunction with this EPD. This tool allows the manufacturer to expediently generate pre-verified project EPDs that reflects the selected pigment and has the possibility to generate data based on custom colour mixes. To obtain a project EPD for a specific formulation from the manufacturer's product catalogue or a custom colour mix, please contact the manufacturer.

Product specific data are based on average values collected in the period 2022. Background data are based on datasets from the LCA databases: EcoInvent 3.9.1, Agri-footprint version 6.3, and the Evah Pigment database. The datasets are less than 10 years old. Generally, the used background datasets are of high quality, and the majority of the datasets are only a couple of years old.

Hazardous substances

The product does not contain substances listed on the "Candidate List of Substances of Very High Concern for authorisation"

(http://echa.europa.eu/candidate-list-table)

Product(s) use

Linseed Paint for Exterior Use is typically applied on woodwork such as windows, doors, gates, etc.

Essential characteristics

The product declared within this EPD are not covered by any harmonized technical specification. Further technical information can be obtained by contacting the manufacturer or on the manufacturer's website:

https://linolie.dk/

Picture of product(s)

LCA background

Declared unit

The LCI and LCIA results in this EPD relates to 1 liter 84/Ordkløveri exterior linseed oil paint.

Name	Value	Unit
Declared unit	1	Ш
Density	1669.0	kg/m³
Conversion factor to 1 kg	1.67	N/A

Functional unit

Not defined.

PCR

This EPD is developed according to the core rules for the product category of construction products in EN 15804 + A2, and product descriptions adheres to the requirements outlined in IBU PCR Part B for coating with organic binders.

Energy modelling principles

Foreground system:

Flowdiagram

Raw material for Ingredients (Pigments, linseed oil and additives) Transport - raw materials Ingredient production Ingredient packaging Packaging film and pallet (For transport) Truck and ferry transport of ingredients to Linolie & Shaking Waste transport and A1 1 liter Linseed oil paint Fransition to End of life Transport to incineration Landfilling of Incineration with Deconstruction ► C1 ► C4 ▶ C3 C2 D Substitution of electricity and heat [4]

No use of certified green energy is applied in this study. A residual energy mix from Denmark is used to model the electricity used in the production.

Consumption of gas for heating is modelled with natural gas.

Information about the energy mix in the foreground system:

Energy mix	EF	Unit
[Residual grid mix, DK, ref. year 2022]	0.64	kg CO₂e/kWh
[Natural gas, EU, ref. year 2022]	0.081	kg CO₂e/MJ

Background system:

Upstream processes are modelled using European average energy mixes and certain country residual mixes. Downstream processes are modelled using European and national average energy mixes.

System boundaries

This EPD is based on a cradle-to-gate LCA, in which 100 weight-% has been accounted for.

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

Product stage (A1-A3) includes:

A1 – Extraction and processing of raw materials

A2 - Transport to the production site

A3 - Manufacturing processes

The product stage comprises the acquisition of all raw materials, products and energy, transport to the production site, packaging and waste processing up to the "end-of-waste" state or final disposal.

In **A1**, the extraction of raw materials used in the ingredients for the exterior linseed oil paint is covered, along with their transportation to the respective production sites. This module also includes the production of the ingredients, as well as the required packaging for both ingredients and transportation, including pallets.

A2 addresses the transportation requirements for each ingredient, with most being transported by truck from various European countries to the production facility.

A3 encompasses the manufacturing of exterior linseed oil paint, involving the mixing of ingredients in a production bucket and processing the mixture through steps such as mixing, shredding, and pouring the finished product into a metal bucket for product packaging. It also includes transportation packaging for outbound delivery to customers. Utility consumption, including electricity, gas for heating, water use, and waste generation for the production year 2022, is allocated and partitioned to the declared products economic allocation using subdivision based on average and specific recipe masses, water content, and viscosity of the mixtures. Lastly, A3 includes waste processing

related to the production bucket, ingredient and transport packaging from A1, pallet usage, and any remaining waste deducted from the utility data, all of which are allocated to the declared unit. The waste is modeled up to the "end-of-waste" state or final disposal.

End of life (C1-C4):

The End of life stage of exterior linseed oil paint is primarily determined by the material to which it is applied. Since the paint remains bonded to the surface, the waste management process follows the disposal or recycling pathway of the underlying material. In most cases, this material is expected to undergo energy recovery through incineration.

During deconstruction and removal in **C1** it is assumed that the surface material will be dismantled manually, without requiring specialized tools. Consequently, these activities are not considered to contribute to the environmental impacts of the product's life cycle. If specialized tools are required, the presence of exterior linseed oil paint will not affect the deconstruction method or the associated energy consumption. Consequently, any environmental impacts are attributed solely to the surface material.

In **C2**, transportation from the deconstruction site to the waste treatment or recycling facility is estimated at 30 km, based on standard distances to such facilities.

In **C3**, the painted surface material is incinerated with energy recovery, while **C4** accounts for the landfill disposal of incineration residues.

Re-use, recovery and recycling potential (D):

Module D models the benefits tied to the energy recovery of the linseed product in C3 through incineration in a municipal solid waste incinerator (MSWI).

Electricity and thermal energy generated from the incineration is assumed to substitute electricity in an average Danish electricity mix and district heating from natural gas.

LCA results

	ENVIRONMENTAL IMPACTS PER 1 LITER												
Indicator	Unit	A1	A2	А3	C1	C2	С3	C4	D				
GWP-total	kg CO₂ eq.	2.30E+00	2.70E-01	3.40E+00	0.00E+00	9.33E-03	2.12E+00	3.47E-03	-5.81E-01				
GWP-fossil	kg CO₂ eq.	4.24E+00	2.70E-01	3.41E+00	0.00E+00	9.32E-03	2.92E-02	3.46E-03	-5.81E-01				
GWP- biogenic	kg CO₂ eq.	-2.10E+00	0.00E+00	-1.88E-02	0.00E+00	0.00E+00	2.09E+00	0.00E+00	1.18E-04				
GWP-luluc	kg CO₂ eq.	1.58E-01	1.34E-04	2.50E-03	0.00E+00	4.60E-06	9.57E-05	2.41E-06	-6.81E-05				
ODP	kg CFC 11 eq.	8.08E-07	5.85E-09	6.52E-08	0.00E+00	2.03E-10	1.54E-08	9.98E-11	-1.69E-08				
AP	mol H+ eq.	4.25E-02	6.74E-04	1.40E-02	0.00E+00	2.04E-05	8.17E-04	2.23E-05	-1.28E-03				
EP- freshwater	kg P eq.	1.85E-03	1.90E-05	1.16E-03	0.00E+00	6.63E-07	3.54E-05	1.46E-05	-1.33E-04				
EP-marine	kg N eq.	1.50E-02	1.70E-04	2.48E-03	0.00E+00	5.14E-06	2.74E-04	7.95E-06	-2.98E-04				
EP- terrestrial	mol N eq.	1.02E-01	1.75E-03	2.58E-02	0.00E+00	5.22E-05	2.78E-03	8.47E-05	-3.07E-03				
POCP	kg NMVOC eq.	1.71E-02	9.74E-04	8.77E-03	0.00E+00	3.16E-05	8.79E-04	3.13E-05	-1.13E-03				
ADPm ¹	kg Sb eq.	1.22E-04	8.74E-07	7.22E-05	0.00E+00	3.05E-08	6.81E-07	7.14E-09	-4.91E-07				
ADPf ¹	MJ	5.13E+01	3.82E+00	4.37E+01	0.00E+00	1.32E-01	1.79E+00	8.44E-02	-8.93E+00				
WDP ¹	m³	5.98E+00	1.57E-02	5.69E-01	0.00E+00	5.46E-04	3.04E-01	3.45E-03	-4.42E-02				
Caption				WP-luluc = G		al Warming P g Potential - I cidifcation;							
		on – terrestria	al; POCP = Ph	notochemical	zone formatio	= Eutrophicat on; ADPm = A - fossil fuels;	Abiotic Deplet	ion Potential					
Disclaimer	¹ The results	of this enviro				re as the unce		hese results	are high or				

^{*}The imbalance in the GWP-biogenic results is due to a biogenic carbon uptake of 3.44E-02 kg CO₂ eq. per. liter 84/Ordkløveri exterior linseed oil paint in the packaging material in A3 that are released in the omitted module A5, thus offsetting the carbon balance in the declared modules.

	ADDITIONAL ENVIRONMENTAL IMPACTS PER 1 LITER PRODUCT													
Indicator	Unit	A1	A2	А3	C1	C2	С3	C4	D					
PM	[Disease incidence]	3.46E-07	2.00E-08	1.21E-07	0.00E+00	6.95E-10	8.79E-09	4.26E-10	-5.09E-09					
IRP ²	[kBq U235 eq.]	4.97E-01	5.14E-03	4.11E-01	0.00E+00	1.79E-04	9.36E-03	9.00E-05	-8.02E-02					
ETP-fw ¹	[CTUe]	1.48E+03	3.78E+00	2.87E+01	0.00E+00	1.31E-01	6.90E+01	1.09E-01	-1.58E+00					
HTP-c ¹	[CTUh]	1.35E-08	2.46E-10	1.47E-08	0.00E+00	8.50E-12	2.25E-10	1.35E-10	-1.75E-10					
HTP-nc ¹	[CTUh]	4.35E-07	5.40E-09	1.46E-07	0.00E+00	1.88E-10	6.37E-09	4.70E-09	-5.11E-09					
SQP ¹	-	3.44E+02	2.29E+00	1.53E+01	0.00E+00	8.01E-02	1.18E+00	2.67E-01	-9.96E-01					
Caption	PM = Particulate Matter emissions; IRP = Ionizing radiation - human health; ETP-fw = Eco toxicity - freshwater; HTP- c = Human toxicity - cancer effects; HTP-nc = Human toxicity - non cancer effects; SOP = Soil Quality													
Disclaimer s	¹ The results of t	this environme			sed with care perienced wi			these results	are high or as					

	RESOURCE USE PER 1 LITER PRODUCT													
Parameter	Unit	A1	A2	А3	C1	C2	СЗ	C4	D					
PERE	[MJ]	1.66E+01	5.98E-02	5.26E+00	0.00E+00	2.08E-03	1.36E-01	1.01E-03	-2.39E-01					
PERM	[MJ]	2.96E+01	0.00E+00	4.06E-01	0.00E+00	0.00E+00	-2.95E+01	0.00E+00	0.00E+00					
PERT	[MJ]	4.61E+01	5.98E-02	5.66E+00	0.00E+00	2.08E-03	-2.94E+01	1.01E-03	-2.39E-01					
PENRE	[MJ]	5.13E+01	3.82E+00	4.37E+01	0.00E+00	1.32E-01	1.79E+00	8.44E-02	-8.93E+00					
PENRM	[MJ]	2.99E+00	0.00E+00	-2.40E+00	0.00E+00	0.00E+00	-5.91E-01	0.00E+00	0.00E+00					
PENRT	[MJ]	5.43E+01	3.82E+00	4.13E+01	0.00E+00	1.32E-01	1.20E+00	8.44E-02	-8.93E+00					
SM	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
FW	[m³]	5.99E+00	1.56E-02	6.20E-01	0.00E+00	5.44E-04	3.20E-01	3.44E-03	-3.75E-02					
Caption	= Use of re resources; I raw materia	enewable prim PENRE = Use als; PENRM = able primary e	nary energy re of non renewa Use of non re energy resource	esources used able primary e newable prima ces; SM = Use	renewable pri as raw mater energy excludi ary energy res e of secondary secondary fue	rials; PERT = 1 ing non renew sources used a material; RS	Total use of re vable primary as raw materi F = Use of re	enewable prim energy resoui als; PENRT = newable secor	nary energy rces used as Total use of					

	WASTE CATEGORIES AND OUTPUT FLOWS PER 1 LITER PRODUCT												
Parameter	Unit	A1	A2	А3	C1	C2	С3	C4	D				
HWD	[kg]	3.59E-03	7.10E-05	6.34E-02	0.00E+00	2.47E-06	1.19E+00	8.18E-07	-6.27E-05				
NHWD	[kg]	1.52E+00	1.88E-01	1.57E+00	0.00E+00	6.58E-03	3.29E-01	2.72E-01	-1.38E-02				
RWD	[kg]	1.84E-04	1.25E-06	1.04E-04	0.00E+00	4.35E-08	2.39E-06	2.18E-08	-2.02E-05				
CRU	[kg]	0.00E+00											
MFR	[kg]	0.00E+00	0.00E+00	1.47E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
MER	[kg]	0.00E+00											
EE	[MJ]	0.00E+00	0.00E+00	1.42E+01	0.00E+00	0.00E+00	6.14E+00	0.00E+00	0.00E+00				
Caption													

BIOGENIC CARBON CONTENT PER 1 LITER PRODUCT						
Parameter Unit At the factory gate						
Biogenic carbon content in product	[kg C]	0.56				
Biogenic carbon content in accompanying packaging	[kg C]	0.01				
Note	1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂					

Additional information

LCA interpretation

The EPD quantifies the environmental impacts associated with 1 liter of 84/Ordkløveri exterior linseed oil paint. In addition, the core environmental impact indicator results associated with 1 kg of the same product are quantified, see section: Core environmental impact indicators result – per. 1 kilogram. The table below summarizes the most contributing module in each core environmental impact category.

MOST CONTRIBUTING MODULE – CO	MOST CONTRIBUTING MODULE – CORE ENVIROMENTAL IMPACT CATEGORIES					
Indicator	Module					
GWP-total	A3 (Manufacturing)					
GWP-fossil	A1 (Raw material supply)					
*GWP-biogenic	N/A					
GWP-luluc	A1 (Raw material supply)					
ODP	A1 (Raw material supply)					
AP	A1 (Raw material supply)					
EP-freshwater	A1 (Raw material supply)					
EP-marine	A1 (Raw material supply)					
EP-terrestrial	A1 (Raw material supply)					
РОСР	A1 (Raw material supply)					
ADPm ¹	A1 (Raw material supply)					
ADPf ¹	A1 (Raw material supply)					
WDP ¹	A1 (Raw material supply)					

^{*}The GWP-biogenic indicator is reported as "N/A" due to the treatment of biogenic CO₂ in the LCIA, as outlined in EN ISO 14067:2018 (6.5.2). Biogenic CO₂ removals (excluding biomass from native forests) are characterized as $-1 \text{ kg CO}_2 \text{ eq/kg CO}_2$ upon entering the product system, while emissions and transfers of biogenic CO₂ to subsequent systems are characterized as $+1 \text{ kg CO}_2 \text{ eq/kg CO}_2$. This results in a net zero biogenic carbon balance for the product system, where CO₂ is primarily absorbed during raw material production (e.g., linseed cultivation in A1) and released during incineration in A3 and C3. The biogenic carbon neutrality means no single module dominates the GWP-biogenic contribution.

A contribution analysis of GWP-total identifies module A3 (Manufacturing) as the dominant source of impact across the Product stage and End of life modules with estimated emissions amounting to 3.4 kg. CO₂ eq., equivalent to 42% of the total emissions (excluding Module D). It is important to note that while GWP-fossil and GWP-luluc have their highest impacts in A1 (Raw Material Supply), A3 (Manufacturing Processes) remains the most significant contributor to the overall GWP. This is because the uptake of biogenic CO₂ during linseed cultivation reduces the net GWP in A1 (Raw Material Supply), thereby shifting the relative contribution.

Within the Product Stage, detailed analysis of module A1 indicates that the primary contributor to this module are emissions associated with the production of Pigments accounting for $1.19~kg~CO_2$ eq. This represents 52% of the emissions within module A1 and 15% of the total emissions across all modules (excluding Module D)

The table below outlines the contribution of each material group.

A1 – PRODUCTION OF INGREDIENTS							
Material GWP-total (kg CO ₂ eq.) GWP-total (kg CO ₂ eq.) - in scientific notation % of module modules ex.							
Pigments	1.19	1.19E+00	51.86%	14.71%			
Linseed oil	Linseed oil 0.08 7.80E-02		3.40%	0.96%			
Drying agent	0.42	4.15E-01	18.09%	5.13%			

Additives 0.12	1.21E-01	5.25%	1.49%
----------------	----------	-------	-------

The emission profile of the packaging materials is summarized in the table below, detailing the total contribution of the materials used to store and transport each ingredient to the manufacturing facility in Haderslev, Denmark.

A1 – PACKAGING								
Material GWP-total (kg CO ₂ eq.) GWP-total (kg CO ₂ eq.) - in scientific notation % of module modules example 1.								
Product packaging - ingredients	0.50	5.03E-01	21.91%	6.22%				
Transport packaging - ingredients	0.00	2.72E-03	0.12%	0.03%				
*Pallet - ingredients	-0.01	-1.44E-02	-0.63%	-0.18%				

^{*}The negative GWP-total impact of the pallets is attributed to the biogenic CO₂ uptake of the pine wood used in their production. This absorbed CO₂ is, however, subsequently released in module A3 during the incineration process as part of waste handling.

In A2, the dominant contributor are emissions associated with the transport of Pigments that accounts for 0.15 kg CO_2 eq. and represents 55% of the emissions associated with the transportation of ingredients to the manufacturing location in Haderslev, Denmark. Overall, the transportation activities in module A2 contributes 3% of the total CO_2 eq. emissions across all modules (excluding Module D)

A2 TRANSPORT								
Material GWP-total (kg CO ₂ eq.) GWP-total (kg CO ₂ eq.) - in scientific notation % of module Module								
Pigments	0.15	1.48E-01	54.96%	1.83%				
Linseed oil	0.12	1.16E-01	43.15%	1.44%				
Drying agent	0.00	2.38E-03	0.88%	0.03%				
Additives	0.00	2.72E-03	1.01%	0.03%				

In module A3, Product packaging is the largest contributor to emissions associated with the manufacturing stage. Product packaging accounts for 35% of the emissions in the module and 15% of the total product emissions. Electricity consumption during manufacturing contributes 34% of the module's emissions and 14% of the total emissions. The use of gas for internal heating at the production site adds 6% to the total emissions, while the handling of waste from manufacturing as well as packaging materials from A1 (including ingredient product packaging materials, transport packaging and pallets) accounts for 6% of the total emissions. Module A3 is identified as the most significant contributor to the product's overall emissions. This is influenced not only by the biogenic CO₂ uptake in A1, which reduces the GWP-total for that module, but also by the environmental impacts associated with product packaging and the nature of small-scale production lacking the efficiencies of larger manufacturing operations. The GWP-total results for A3 are presented in the table below.

A3 - MANUFACTURING							
Inventory GWP-total (kg CO ₂ eq.) GWP-total (kg CO ₂ eq.) - in scientific notation % of module modules ex.							
Electricity	1.15	33.90%	14.22%				
Gas	Gas 0.46 4.64E-01			5.73%			
Water	0.00	1.03E-06	0.00%	0.00%			

Production bucket 0.09		8.62E-02	2.54%	1.07%
Product packaging	1.18	1.18E+00	34.78%	14.59%
Transport packaging	0.03	3.21E-02	0.95%	0.40%
Waste handling	0.48	4.81E-01	14.17%	5.95%

The C modules represent the End of Life stage of the product, with module C3 being the primary contributor to emissions. In this stage, the product is incinerated with energy recovery, resulting in emissions of 2.12 kg. CO₂ eq., which accounts for 26% of the total product emissions. The GWP-total in this module is significantly influenced by the release of biogenic CO₂, which was originally absorbed primarily by linseed oil during the raw material production stage (module A1). This reflects the dynamic role of biogenic carbon in the product's life cycle, where the emissions in C3 effectively balance the biogenic carbon uptake recorded earlier. These findings emphasize the importance of considering both carbon uptake and release when interpreting life cycle emissions, particularly in products with substantial biogenic carbon content. Additionally, it is crucial to evaluate other impact categories, such as resource depletion, acidification, and eutrophication, to ensure a holistic assessment and avoid burden shifting, where reductions in one impact category may unintentionally increase impacts in another.

The GWP-total results for the C modules are summarized in the table below.

C Modules							
Module GWP-total (kg CO ₂ eq.) GWP-total (kg CO ₂ eq.) - in scientific notation % of module m							
*C1 - De-construction demolition	0.00	0.00E+00	0.00%	0.00%			
C2 - Transport	0.01	9.33E-03	0.43%	0.12%			
C3 - Waste processing 2.15		2.15E+00	99.41%	26.17%			
C4 - Disposal	0.00	3.47E-03	0.16%	0.04%			

^{*}The deconstruction/removal of the declared product in C1 are assumed to be done manually, without specialized tools, and are therefore not covered by any processes contributing to the environmental impact of the life cycle.

Technical information on scenarios

End of life (C1-C4)

Processes	Value	Unit
Collected separately	1.68	kg
Collected with mixed waste	0.00	kg
For reuse	0.00	kg
For recycling	0.00	kg
For energy recovery	1.68	kg
For final disposal	0.27	kg

Re-use, recovery and recycling potential (D)

Processes	Value	Unit
Amount	1.68	kg/DU
LHV	10.51	MJ/kg
EET	4.22	MJ/DU
EEE	1.92	MJ/DU
Loss	11.54	MJ/DU

Core environmental impact indicators result - per. 1 kilogram.

The table below provides the additional information of the core environmental impact indicator results associated with 1 kg of 84/Ordkløveri.

	ENVIRONMENTAL IMPACTS PER 1 kg								
Indicator	Unit	A1	A2	А3	C1	C2	С3	C4	D
GWP-total	kg CO₂ eq.	1.37E+00	1.60E-01	2.02E+00	0.00E+00	5.55E-03	1.26E+00	2.06E-03	-3.45E-01
GWP-fossil	kg CO₂ eq.	2.52E+00	1.60E-01	2.03E+00	0.00E+00	5.54E-03	1.74E-02	2.06E-03	-3.45E-01
GWP- biogenic	kg CO₂ eq.	-1.25E+00	0.00E+00	-1.12E-02	0.00E+00	0.00E+00	1.24E+00	0.00E+00	7.03E-05
GWP-luluc	kg CO₂ eq.	9.40E-02	7.95E-05	1.49E-03	0.00E+00	2.74E-06	5.69E-05	1.43E-06	-4.05E-05
ODP	kg CFC 11 eq.	4.81E-07	3.48E-09	3.88E-08	0.00E+00	1.21E-10	9.16E-09	5.94E-11	-1.01E-08
AP	mol H+ eq.	2.53E-02	4.01E-04	8.35E-03	0.00E+00	1.21E-05	4.86E-04	1.33E-05	-7.63E-04
EP- freshwater	kg P eq.	1.10E-03	1.13E-05	6.89E-04	0.00E+00	3.94E-07	2.11E-05	8.70E-06	-7.89E-05
EP-marine	kg N eq.	8.93E-03	1.01E-04	1.48E-03	0.00E+00	3.06E-06	1.63E-04	4.73E-06	-1.77E-04
EP- terrestrial	mol N eq.	6.06E-02	1.04E-03	1.53E-02	0.00E+00	3.11E-05	1.65E-03	5.04E-05	-1.82E-03
POCP	kg NMVOC eq.	1.02E-02	5.79E-04	5.21E-03	0.00E+00	1.88E-05	5.23E-04	1.86E-05	-6.72E-04
ADPm ¹	kg Sb eq.	7.23E-05	5.20E-07	4.29E-05	0.00E+00	1.81E-08	4.05E-07	4.24E-09	-2.92E-07
ADPf ¹	MJ	3.05E+01	2.27E+00	2.60E+01	0.00E+00	7.87E-02	1.06E+00	5.02E-02	-5.31E+00
WDP ¹	m³	3.56E+00	9.33E-03	3.39E-01	0.00E+00	3.25E-04	1.81E-01	2.05E-03	-2.63E-02
Caption	GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidifcation;								
	EP-freshwater = Eutrophication - aquatic freshwater; EP-marine = Eutrophication - aquatic marine; EP-terrestrial = Eutrophication - terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential - minerals and metals; ADPf = Abiotic Depletion Potential - fossil fuels; WDP = water use								
Disclaimer	¹ The results	of this enviro				re as the unce		hese results	are high or

as there is limited experienced with the indicator.

*The imbalance in the GWP-biogenic results is due to a biogenic carbon uptake of 2.06E-02 kg CO₂ eq. per. kg. 84/Ordkløveri exterior linseed oil paint in the packaging material in A3 that are released in the omitted module A5, thus offsetting the carbon balance in the declared modules.

Indoor air

The EPD does not give information on release of dangerous substances to indoor air because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A1 chapter 7.4.1.

Soil and water

The EPD does not give information on release of dangerous substances to soil and water because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A1 chapter 7.4.2.

References

Publisher	L epddanmark
	www.epddanmark.dk Template version 2024.2
Programme operator	Danish Technological Institute Gregersensvej DK-2630 Taastrup www.teknologisk.dk
LCA-practitioner	Philip Mckay Boyle NRGI Rådgivning A/S Hedeager 5 8200 Aarhus Email: phmb@nrgi.dk Julie Søndergaard Skov NRGI Rådgivning A/S Hedeager 5 8200 Aarhus Email: jssk@nrgi.dk
LCA software /background data	SimaPro 9.5.0.0 / Ecoinvent v.3.9.1 Database, Agri-footprint version 6.3 Database, Evah Pigment 2019 Database EN 15804 reference package 3.1
3 rd party verifier	Guangli Du Department of the Built Environment Aalborg University A.C. Meyers Vænge 15 2450 København SV www.aau.dk

General programme instructions

Version 2.0 www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 - "Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

IBU PCR Part B

Requirements on the EPD for Coatings with organic binders v.3-4, June 2023. Institut Bauen und Umwelt e.V. (IBU).

EN 15942

DS/EN 15942:2011 – " Sustainability of construction works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 – " Environmental labels and declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 – " Environmental management – Life cycle assessment – Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 – " Environmental management – Life cycle assessment – Requirements and quidelines"